Algebras Describing Pseudocomplemented, Relatively Pseudocomplemented and Sectionally Pseudocomplemented Posets

نویسندگان

چکیده

In order to be able use methods of universal algebra for investigating posets, we assigned every pseudocomplemented poset, relatively poset and sectionally a certain (based on commutative directoid or λ-lattice) which satisfies identities implications. We show that the algebras fully characterize given corresponding posets. A kind symmetry can seen in relationship between classes mentioned posets directoids λ-lattices representing these relational structures. As paper, this is symmetric. Our results satisfy strong congruence properties transferred back also mention applications such non-classical logics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iplications in Sectionally Pseudocomplemented Posets

A sectionally pseudocomplemented poset P is one which has the top element and in which every principal order filter is a pseudocomplemented poset. The sectional pseudocomplements give rise to an implication-like operation on P which coincides with the relative pseudocomplementation if P is relatively psudocomplemented. We characterise this operation and study some elementary properties of upper...

متن کامل

Mplications in Sectionally Pseudocomplemented Posets

A sectionally pseudocomplemented poset P is one which has the top element and in which every principal order filter is a pseudocomplemented poset. The sectional pseudocomplements give rise to an implication-like operation on P which coincides with the relative pseudocomplementation if P is relatively psudocomplemented. We characterise this operation and study some elementary properties of upper...

متن کامل

Sectionally Pseudocomplemented Residual Lattice

At first, we recall the basic concept, By a residual lattice is meant an algebra ) 1 , 0 , , , , , ( o ∗ ∧ ∨ = L L such that (i) ) 1 , 0 , , , ( ∧ ∨ = L L is a bounded lattice, (ii) ) 1 , , ( ∗ = L L is a commutative monoid, (iii) it satisfies the so-called adjoin ness property: y z y x = ∗ ∨ ) ( if and only if y x z y o ≤ ≤ Let us note [7] that y x ∨ is the greatest element of the set y z y x ...

متن کامل

Pseudocomplemented directoids

Directoids as a generalization of semilattices were introduced by J. Ježek and R. Quackenbush in 1990. We modify the concept of a pseudocomplement for commutative directoids and study several basic properties: the Glivenko equivalence, the set of the so-called boolean elements and an axiomatization of these algebras.

متن کامل

Finite pseudocomplemented lattices and 'permutoedre'

We study finite pseudocomplemented lattices and especially those that are also complemented. With regard to the classical results on arbitrary or distributive pseudocomplemented lattices the finiteness property allows to bring significant more precise details on the structural properties of such lattices. These results can especially be applied to the lattices defined by the "weak Bruhat order"...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13050753